FREE AstroScience SEARCH ENGINE

Monday, August 13, 2018

CLASSIFICHIAMO LE STELLE: Classi spettrali e classi di luminosità


7:18 PM |

La classificazione più usata per dividere le stelle si basa sulla temperatura, ossia sul loro spettro, dato che sono parametri strettamente collegati. Originariamente chiamato sistema di Harvard, è ora allargato a ulteriori suddivisioni e prende il nome di sistema di Morgan-Keenan. Si sono identificate sette classi spettrali che coprono il 99% delle stelle conosciute. Ogni classe corrisponde a una lettera dell’alfabeto (per motivi storici precedenti): O, B, A, F, G, K, M (per ricordare la sequenza basta tenere a mente la frase “Oh, Be A Fine Girl, KISS Me!”), dove le stelle O sono le più calde e le K le più fredde. Seguendo la tradizione comune a ogni classe viene associato anche il colore relativo: le O sono dette “blu”, le B “bianco-blu”, le A “bianche”, le F “bianco-gialle”, le G “gialle”, le K “arancioni” e le M “rosse”.

Ecco un semplice schema che riassume le classi e la loro temperatura:
O 28000 – > 50000 K
B 10000 – 28000 K
A 7500 – 10000 K
F 6000 – 7500 K
G 4900 – 6000 K
K 3500 – 4900 K
M < 3500 K

Per suddividere meglio ogni singola classe, sono stati introdotti dei numeri aggiuntivi, da 0 a 9, che dividono ogni classe in decimi. Ad esempio, una stella A5 indica una stella a mezza strada tra una A0 e una F0, mentre una A2 indica una stella di classe A che è due decimi più fredda di una A0. Numeri più bassi indicano, infatti, stelle più calde, all’interno di una data classe. Il nostro Sole è di classe G2.

Tuttavia, questa classificazione considera soltanto la temperatura di una stella e non dice niente riguardo alla loro luminosità o se volete le loro dimensioni o ,ancora meglio, la larghezza di certe linee spettrali (che abbiamo visto sono parametri correlati). Nello stesso sistema di Morgan-Keenan si sono allora introdotti dei numeri romani da I a V, in grado di indicare, a parità di classe spettrale, la luminosità e/o le dimensioni dell’astro. La classe I è detta anche delle “supergiganti”, luminosissime. La II delle giganti luminose, la III delle giganti, la IV delle sub-giganti e la V delle nane, o di sequenza princincipale (ci torneremo dopo). Meno frequentemente si usano anche la VI (sub-nane o nane piccole) e la VII (nane bianche). A volte si aggiunge anche la 0 (numero) relativa alle ipergiganti, ma il simbolo crea un po’ di confusione, dato che una stella di classe O (lettera) può anche diventare O0 se è al massimo della temperatura (vedi classificazione spettrale). Si usano anche sotto classi di luminosità. La I si sdoppia in Ia e Ib per dividere ulteriormente le supergiganti. A questo punto, il nostro Sole diventa una G2V, che si traduce in “stella gialla, di due decimi verso l’arancio, nana di sequenza principale”. Riassumiamo anche le classi di luminosità:
Ipergiganti – 0
Supergiganti – Ia,Ib
Giganti luminose – II
Giganti – III
Sub-giganti – IV
Nane o di sequenza principale – V
Sub-nane – VI
Nane bianche – VII

Avremmo poco da dire di più. Tuttavia, vale la pena cercare di rappresentare in grafico le varie classificazioni. Le classi spettrali, però, rappresentano una suddivisione a una sola dimensione, essendo basata solo sulla temperatura. Le classi di luminosità possono invece inserirsi in un grafico bidimensionale, in cui siano correlate temperatura (o se volete tipo spettrale) e la luminosità (o la magnitudine assoluta o indirettamente il diametro). Possiamo facilmente mostrarvelo, ma sarà immediato il richiamo a un diagramma ben più famoso e fondamentale: il diagramma di Hertzsprung – Russel, noto anche come diagramma HR.

Ejnar Hertzsprung e Henry Norris Russell lo idearono indipendentemente intorno al 1910, inserendo in un grafico la temperatura delle stelle e la loro magnitudine assoluta. Ciò venne fatto ovviamente solo per gli oggetti di cui si avevano a disposizione sia lo spettro che la distanza. Tuttavia, fu sufficiente per comprendere fin dall’inizio le enormi potenzialità di esso: le stelle non si posizionavano a casaccio, ma seguivano linee e raggruppamenti precisi e ben individuabili.

Il diagramma H-R è uno strumento essenziale per comprendere l’evoluzione e le caratteristiche fisiche delle singole stelle e degli agglomerati stellari: ammassi aperti, ammassi globulari e galassie. Grazie al diagramma H-R è possibile confrontare le predizioni teoriche dei modelli di evoluzione stellare con le osservazioni per verificare l’accuratezza delle prime; determinare l’età, la composizione chimica e la distanza di una popolazione stellare; derivare la storia della formazione stellare di un agglomerato di stelle etc.

Come già detto precedentemente, da un primo esame del diagramma H-R si osserva immediatamente come le stelle tendano a posizionarsi in regioni ben distinte: la struttura evolutiva predominante è la diagonale che parte dall’angolo in alto a sinistra (dove si trovano le stelle più massicce, calde e luminose) verso l’angolo in basso a destra (dove si posizionano le stelle meno massicce, più fredde e meno luminose), chiamata sequenza principale. In basso a sinistra si trova la sequenza delle nane bianche, mentre sopra la sequenza principale, verso destra, si dispongono le giganti rosse e le supergiganti.

Vediamo allora come si posizionano le classi di luminosità nel grafico temperatura-magnitudine e già capiremo molto del diagramma HR. Anzi, ancora meglio: al posto della temperatura inseriamo le classi spettrali (che sappiamo essere strettamente collegate) e avremo una rappresentazione garfica di entrambi le divisioni introdotte precedentemente (Fig. 6)


Figura 6. la magnitudine assoluta e le classi spettrali permettono di individuare molto bene le zone delle varie classi di luminosità. Si noti che sono state aggiunte anche le classi spettrali L e T. Non sono le sole classi che spesso si trovano in aggiunta a quelle classiche. Sono legate a speciali gruppi stellari, ma rappresentano una piccola minoranza di oggetti celesti e possiamo tralasciarli. Per curiosità, le L e T si riferiscono a nane molto fredde. Le T sono le ben conosciute nane brune, oggetti intermedi tra stelle e pianeti.

Per concludere, non ci resta che inserire al suo interno le stelle in prima persona e avremo una delle tante possibili rappresentazioni del diagramma HR (Fig. 7)


Figura 7. Il diagramma HR costruito per 22000 stelle osservate dalla missione Hipparcos


You Might Also Like :


0 commenti:

Post a Comment