Researchers at West Virginia University just released a paper detailing how the fundamental law can be applied more broadly than ever before—a finding that has the potential to rewrite the way we understand complex energetic systems.
The first law of thermodynamics is one of the bedrock laws of physics. Even if you’re not gung-ho about physics research, you might have heard the simplified version: energy can neither be created nor destroyed, but it can be converted into different forms.
Suppose you heat up a balloon,” said Paul Cassak, lead author on the paper, in a press release. “The first law of thermodynamics tells you how much the balloon expands and how much hotter the gas inside the balloon gets. The key is that the total amount of energy causing the balloon to expand and the gas to get hotter is the same as the amount of heat you put into the balloon.”
This law has been an incredibly helpful tool for physicists since its discovery in the 1850s. But there’s a catch—it has historically only worked when things are in or near a state of thermodynamic equilibrium.
At its core, that means the temperature of a system is consistent throughout. There aren’t big hot and cold spots; it’s all basically the same temperature, which means it all has pretty much the same amount of energy.
Researchers have long been trying to find a way to apply the first law to systems that are not in equilibrium.
The breakthrough for this team of researchers came in the form of a lot of complicated math. Basically, the energy conversion in systems that are in thermodynamic equilibrium can be described almost entirely by their density and pressure.
What the team needed was a way to quantify all of the energy conversion that wasn’t described by density and pressure. And they found it.
The work could have applications in fields ranging from circuitry and quantum computing to space weather.
Ref: Popular Mechanics; PHYSICAL REVIEW LETTERS ( https://doi.org/10.1103/PhysRevLett.130.085201 )
The first law of thermodynamics is one of the bedrock laws of physics. Even if you’re not gung-ho about physics research, you might have heard the simplified version: energy can neither be created nor destroyed, but it can be converted into different forms.
Suppose you heat up a balloon,” said Paul Cassak, lead author on the paper, in a press release. “The first law of thermodynamics tells you how much the balloon expands and how much hotter the gas inside the balloon gets. The key is that the total amount of energy causing the balloon to expand and the gas to get hotter is the same as the amount of heat you put into the balloon.”
This law has been an incredibly helpful tool for physicists since its discovery in the 1850s. But there’s a catch—it has historically only worked when things are in or near a state of thermodynamic equilibrium.
At its core, that means the temperature of a system is consistent throughout. There aren’t big hot and cold spots; it’s all basically the same temperature, which means it all has pretty much the same amount of energy.
Researchers have long been trying to find a way to apply the first law to systems that are not in equilibrium.
The breakthrough for this team of researchers came in the form of a lot of complicated math. Basically, the energy conversion in systems that are in thermodynamic equilibrium can be described almost entirely by their density and pressure.
What the team needed was a way to quantify all of the energy conversion that wasn’t described by density and pressure. And they found it.
The work could have applications in fields ranging from circuitry and quantum computing to space weather.
Ref: Popular Mechanics; PHYSICAL REVIEW LETTERS ( https://doi.org/10.1103/PhysRevLett.130.085201 )
Investigadores de la Universidad de West Virginia acaban de publicar un artículo que detalla cómo la ley fundamental se puede aplicar de manera más amplia que nunca, un hallazgo que tiene el potencial de reescribir la forma en que entendemos los sistemas energéticos complejos.
ReplyDeleteLa primera ley de la termodinámica es una de las leyes fundamentales de la física. Incluso si no está entusiasmado con la investigación física, es posible que haya escuchado la versión simplificada: la energía no se puede crear ni destruir, pero se puede convertir en diferentes formas.
Supongamos que calienta un globo”, dijo Paul Cassak, autor principal del artículo, en un comunicado de prensa. “La primera ley de la termodinámica te dice cuánto se expande el globo y cuánto más se calienta el gas dentro del globo. La clave es que la cantidad total de energía que hace que el globo se expanda y que el gas se caliente es la misma que la cantidad de calor que pones en el globo”.
Esta ley ha sido una herramienta increíblemente útil para los físicos desde su descubrimiento en la década de 1850. Pero hay una trampa: históricamente solo ha funcionado cuando las cosas están en o cerca de un estado de equilibrio termodinámico.
En esencia, eso significa que la temperatura de un sistema es constante en todo momento. No hay grandes puntos calientes y fríos; Básicamente, todo tiene la misma temperatura, lo que significa que todo tiene más o menos la misma cantidad de energía.
Los investigadores llevan mucho tiempo intentando encontrar una manera de aplicar la primera ley a sistemas que no están en equilibrio.
El gran avance para este equipo de investigadores se produjo en forma de muchas matemáticas complicadas. Básicamente, la conversión de energía en sistemas que están en equilibrio termodinámico puede describirse casi en su totalidad por su densidad y presión.
Lo que el equipo necesitaba era una forma de cuantificar toda la conversión de energía que no estaba descrita por la densidad y la presión. Y lo encontraron.
El trabajo podría tener aplicaciones en campos que van desde circuitos y computación cuántica hasta clima espacial.
Ref: Mecánica Popular; REVISIÓN FÍSICA
The above comment written by
ReplyDeleteAnonymous on March 3,2023 is not understanable as no translation in English is given with it. I live in Punjab,
Pakistan .So I can only read, write and
speak in Urdu,Punjabi n English.I have graduated in BSc. Physics from Kinnaird College for Women University,
Lahore.I am very interested to read about new discoveries you write about in AstroScience .I am a Retired Principalof a Federal Govt.GirlsPublic School ,Gujranwala cantt.Pakistan. Please write or give translation in English and also Share coloured photos of telescopic discoveries sent from Space.I wish my
granddaughter Shaina Kamran, grade 3, who is very interested in studying Science with practicals, study Astro Science in higher classes and become
an Astronaut.
From: Mrs Josephine Johnson.
Post a Comment