Tuesday, March 30, 2021

What is A gravitational lens?

8:19 PM | , ,

A gravitational lens is a distribution of matter (such as a cluster of galaxies) between a distant light source and an observer, that is capable of bending the light from the source as the light travels towards the observer. This effect is known as gravitational lensing, and the amount of bending is one of the predictions of Albert Einstein’s general theory of relativity. Classical physics also predicts the bending of light, but only half of that predicted by general relativity.

Although Einstein made unpublished calculations on the subject in 1912, Orest Khvolson (1924) and Frantisek Link (1936) are generally credited with being the first to discuss the effect in print. However, this effect is more commonly associated with Einstein, who published an article on the subject in 1936.

Fritz Zwicky posited in 1937 that the effect could allow galaxy clusters to act as gravitational lenses. It was not until 1979 that this effect was confirmed by observation of the so-called Twin QSO SBS 0957+561.

Unlike an optical lens, a point-like gravitational lens produces a maximum deflection of light that passes closest to its center, and a minimum deflection of light that travels furthest from its center. Consequently, a gravitational lens has no single focal point, but a focal line. If the (light) source, the massive lensing object, and the observer lie in a straight line, the original light source will appear as a ring around the massive lensing object (provided the lens has circular symmetry). If there is any misalignment, the observer will see an arc segment instead.

More commonly, where the lensing mass is complex (such as a galaxy group or cluster) and does not cause a spherical distortion of spacetime, the source will resemble partial arcs scattered around the lens. The observer may then see multiple distorted images of the same source; the number and shape of these depending upon the relative positions of the source, lens, and observer, and the shape of the gravitational well of the lensing object.

There are three classes of gravitational lensing:

Strong lensing: where there are easily visible distortions such as the formation of Einstein rings, arcs, and multiple images. Despite being considered “strong”, the effect is in general relatively small, such that even a galaxy with a mass more than 100 billion times that of the Sun will produce multiple images separated by only a few arcseconds.

Weak lensing: where the distortions of background sources are much smaller and can only be detected by analyzing large numbers of sources in a statistical way to find coherent distortions of only a few percent. The lensing shows up statistically as a preferred stretching of the background objects perpendicular to the direction to the centre of the lens. By measuring the shapes and orientations of large numbers of distant galaxies, their orientations can be averaged to measure the shear of the lensing field in any region.

Microlensing: where no distortion in shape can be seen but the amount of light received from a background object changes in time. The lensing object may be stars in the Milky Way in one typical case, with the background source being stars in a remote galaxy, or, in another case, an even more distant quasar. In extreme cases, a star in a distant galaxy can act as a microlens and magnify another star much farther away. The first example of this was the star Icarus, that is to date the farthest star ever observed, thanks to the boost in flux due to the microlensing effect.

You Might Also Like :