Monday, February 1, 2021


5:36 PM |

A ring system is a disc or ring orbiting an astronomical object that is composed of solid material such as dust and moonlets, and is a common component of satellite systems around giant planets. A ring system around a planet is also known as a planetary ring system. The composition of ring particles varies; they may be silicate or icy dust. Larger rocks and boulders may also be present, and in 2007 tidal effects from eight ‘moonlets’ only a few hundred meters across were detected within Saturn’s rings.

 The maximum size of a ring particle is determined by the specific strength of the material it is made of, its density, and the tidal force at its altitude. The tidal force is proportional to the average density inside the radius of the ring, or to the mass of the planet divided by the radius of the ring cubed. It is also inversely proportional to the square of the orbital period of the ring.

There are three ways that thicker planetary rings (the rings around planets) have been proposed to have formed: from material of the protoplanetary disk that was within the Roche limit of the planet and thus could not coalesce to form moons, from the debris of a moon that was disrupted by a large impact, or from the debris of a moon that was disrupted by tidal stresses when it passed within the planet’s Roche limit.

Most rings were thought to be unstable and to dissipate over the course of tens or hundreds of millions of years, but it now appears that Saturn’s rings might be quite old, dating to the early days of the Solar System.

Fainter planetary rings can form as a result of meteoroid impacts with moons orbiting around the planet or, in case of Saturn’s E-ring, the ejecta of cryovolcanic material.

Sometimes rings will have “shepherd” moons, small moons that orbit near the inner or outer edges of rings or within gaps in the rings. The gravity of shepherd moons serves to maintain a sharply defined edge to the ring; material that drifts closer to the shepherd moon’s orbit is either deflected back into the body of the ring, ejected from the system, or accreted onto the moon itself.

The most prominent and most famous planetary rings in the Solar System are those around Saturn, but the other three giant planets (Jupiter, Uranus and Neptune) also have ring systems. Recent evidence suggests that ring systems may also be found around other types of astronomical objects, including minor planets, moons, and brown dwarfs, and as well, the interplanetary spaces between planets such as Venus and Mercury.

Reports in March 2008 suggested that Saturn’s moon Rhea may have its own tenuous ring system, which would make it the only moon known to have a ring system. A later study published in 2010 revealed that imaging of Rhea by the Cassini spacecraft was inconsistent with the predicted properties of the rings, suggesting that some other mechanism is responsible for the magnetic effects that had led to the ring hypothesis.

Existence of exoplanets with rings is plausible. Although particles of ice, the material that is predominant in the rings of Saturn, can only exist around planets beyond the frost line, within this line rings consisting of rocky material can be stable in the long term. 

Such ring systems can be detected for planets observed by the transit method by additional reduction of the light of the central star if their opacity is sufficient. As of 2020, one candidate extrasolar ring system has been found by this method, around HIP 41378 f.

Fomalhaut b was found to be large and unclearly defined when detected in 2008. This was hypothesized to either be due to a cloud of dust attracted from the dust disc of the star, or a possible ring system, though in 2020 Fomalhaut b itself was determined to very likely be an expanding debris cloud from a collision of asteroids rather than a planet.

Proxima Centauri c has been observed to be far brighter than expected for its low mass of 7 Earth masses, which may be attributed to a ring system of about 5 RJ.

A sequence of occultations of the star 1SWASP J140747.93-394542.6 observed in 2007 over 56 days was interpreted as a transit of a ring system of a (not directly observed) substellar companion dubbed “J1407b”. This ring system is attributed a radius of about 90 million km (about 200 times that of Saturn’s rings). In press releases, the term “super-Saturn” was used.

You Might Also Like :

0 commenti:

Post a Comment